
TagSLAM: Robust SLAM with Fiducial Markers

Bernd Pfrommer1,2 Kostas Daniilidis1

Abstract— TagSLAM provides a convenient, flexible, and
robust way of performing Simultaneous Localization and Map-
ping (SLAM) with AprilTag fiducial markers. By leveraging
a few simple abstractions (bodies, tags, cameras), TagSLAM
provides a front end to the GTSAM factor graph optimizer that
makes it possible to rapidly design a range of experiments that
are based on tags: full SLAM, extrinsic camera calibration with
non-overlapping views, visual localization for ground truth, loop
closure for odometry, pose estimation etc. We discuss in detail
how TagSLAM initializes the factor graph in a robust way,
and present loop closure as an application example. TagSLAM
is a ROS based open source package and can be found at
https://berndpfrommer.github.io/tagslam_web.

I. INTRODUCTION

Fig. 1. Single-camera TagSLAM scene with dynamic “rig” and “block”
bodies, and a static “lab” body.

Accurate and robust Simultaneous Localization And Map-
ping (SLAM) algorithms are arguably one of the corner
pieces for building autonomous systems. For this reason,
SLAM has been studied extensively since the 1980s [1]. In
a nutshell, SLAM methods take sensor data such as camera
images as input and extract easily recognizable features
(“landmarks”). The landmarks are entered into a map such
that when the same landmark is detected again later, the
observer’s pose can be determined by triangulation. In graph

1University of Pennsylvania School of Engineering and Applied Science.
We gratefully acknowledge support through the following grants: NSF-IIP-
1439681 (I/UCRC RoSeHuB), NSF-IIS-1703319, NSF MRI 1626008, and
the DARPA FLA program.

2Thanks to Chao Qu and Ke Sun for many useful discussions.

based SLAM, a nonlinear optimizer such as GTSAM [2]
is used to simultaneously optimize the pose of the observer
and the location of the landmarks, given the sensor measure-
ments.

Much research effort [1] has gone into solving the hard
aspects of SLAM. One of them is recognizing previously
seen landmarks (”loop closure”). This is often difficult if
landmarks are observed from a different viewpoint, or under
different lighting conditions. The other is maintaining a map
of landmarks. To limit memory consumption and achieve
fast retrieval, landmarks must be at some point discarded,
efficient retrieval databases must be updated and queried,
adding considerable complexity [3]. If loop closure fails, the
estimated camera pose starts to drift, which is a well-known
problem with local-map-only algorithms such as visual-
inertial odometry (VIO).

In many situations, and in particular for laboratory ex-
periments these problems can be sidestepped with a mild
intervention to the environment. By placing visual fiducial
markers such as the popular AprilTags [4] in a scene, one can
create a small set of artifical landmarks, typically numbering
less than 100. The TagSLAM framework presented in this
paper is designed for such a situation. With only a few
landmarks to consider, memory and retrieval speed are no
longer critical, and loop closure is guaranteed once a tag is
successfully decoded by the AprilTag library. If one or more
tags are visible at all times, then TagSLAM can perform both
tracking and loop closure.

But more importantly, tags permit the introduction of ge-
ometric constraints that have been observed by other means.
For instance, markers can be placed inside a building at co-
ordinates that are known because a highly accurate building
plan is available [5]. Another alternative is measuring the
locations of select tags with a laser distance measuring tool.
When a measured marker is later recognized by the moving
camera, it will pull the trajectory to the reference location. As
we demonstrate in the experimental section, this can augment
existing SLAM or VIO methods. By utilizing well-known
tags in a few places, and ubiquitous but anonymous feature
points elsewhere, one can leverage the advantages of both
approaches.

Even though tag based SLAM is much simpler than
general SLAM, some remaining difficulties are addressed in
this paper. Since TagSLAM utilizes GTSAM [2], a graph
based non-convex optimizer, care must be taken to properly
initialize all starting values. A bad initial value can cause
the optimizer to fail or to converge to a local minimum.
In the present work we give a detailed description of how

https://berndpfrommer.github.io/tagslam_web

we achieve robust initialization to make TagSLAM a tool
that can be applied to a wide range of real-world situations
without parameter tuning.

It is worthwhile noting that SLAM is a rather general
algorithm, and therefore can solve several related, simpler
problems as well. If for example the camera pose is known,
one can estimate the pose of the landmarks. Likewise,
if a map of the landmarks is known, the camera pose
can be inferred. TagSLAM inherits all of this flexibility.
In contrast to traditional SLAM packages however, where
moving landmarks are filtered out, TagSLAM can explicitly
model and track multiple objects that have tags attached
to them. This means TagSLAM can also be used for pose
estimation of objects other than cameras, as shown in Fig.
1. In fact, TagSLAM has been deployed for the University
of Pennsylvania’s Smart Aviary project in a scenario where
all cameras are static, and only some tags are moving. This
is not directly possible with any SLAM package that we are
aware of.

TagSLAM’s robustness and availability as an open-source
ROS [6] package make it particularly accessible for re-
searchers new to robotics. It is now being used at the
University of Pennsylvania’s GRASP lab for extrinsic camera
calibration with non-overlapping views, loop closure on
visual-inertial odometry benchmarks, tag mapping, object
pose estimation, and more. TagSLAM is also employed in a
forthcoming project by the University of Michigan’s DASC
laboratory.

II. RELATED WORK

As a review of the vast SLAM literature is beyond the
scope of this paper, we refer to the thorough survey in Ref.
[1]. In this section we will focus on SLAM that utilizes
fiducial markers.

Ref. [7] presents a visual-inertial approach for obtaining
ground truth positions from a combination of inertial mea-
surement unit (IMU) and camera. They also utilize April-
Tags, but in contrast to TagSLAM use an Extended Kalman
Filter (EKF), a method that is well suited for their goal
to effectively provide a real-time, outdoor, low-cost motion
capture system. Since TagSLAM uses a graph optimizer
instead of a filter, it can leverage observations from both
the past and the future, resulting in smoother trajectories.
In case IMU data is available, TagSLAM can be set up to
operate in a similar fashion to the system described in [7]
by supplying externally generated VIO data.

Most similar to our work is Ref. [8], where a system is de-
scribed that can perform real-time SLAM from square planar
markers (SPM-SLAM). By using keyframes and having dif-
ferent algorithms for tracking and loop closure, they achieve
high performance and scalability to large scenes. In contrast,
TagSLAM considers every frame a keyframe, and relies on
iSAM2 [2] to exploit sparsity. This significantly simplifies
TagSLAM’s code base, and facilitates the implementation of
its flexible model. For long trajectories and many tags, we ex-
pect SPM-SLAM to scale better due to its use of keyframes.
However, our experiments (Sec. VI) indicate that TagSLAM

can handle scenes that are sufficiently large for many sit-
uations. Unlike TagSLAM, SPM-SLAM cannot incorporate
keypoints via odometry measurements, although this short-
coming is addressed in a forthcoming paper (“UcoSLAM”).
As far as robustness is concerned, both TagSLAM and SPM-
SLAM rely on detecting tag pose ambiguity [9], but SPM-
SLAM attempts to use the measurements right away by
relying on a sophisticated two-frame initialization algorithm,
whereas TagSLAM delays use of the tag’s observations until
its pose can be determined unambiguously. For achieving
robustness during relocalization, SPM-SLAM relies again on
pose ambiguity measures, whereas TagSLAM additionally
considers the tag’s apparent size.

Also closely related to the present paper is the underwater
SLAM performed in [10]. The authors leverage AprilTags
and the GTSAM factor graph optimizer to obtain vision
based ground truth poses and extrinsic calibration. The focus
of their work however is more on providing a solution
for a particular problem, whereas TagSLAM aims to be a
general purpose framework that can be easily applied to
many different settings. In fact, all the factors in [10] that are
related to AprilTags are already implemented in TagSLAM.
The code structure of TagSLAM is designed such that adding
the problem-specific XHY and ZPR factors from [10] should
be straight forward.

III. MODEL SETUP

TagSLAM uses a few simple abstractions with which
complex scenarios can be built without the need to write any
code. This section will introduce the concepts and establish
the necessary notation.

We denote as TB
A an SE(3) transform that takes vector

coordinates XA in reference system A and expresses them
in B:

XB = TB
A XA . (1)

Such a transform defines a pose. We distinguish two kinds:
• Static pose: the transform TB

A is independent of time.
A static poses is represented by a single variable for
the optimization process. Note that this does not mean
the pose must be known from the beginning (i.e have a
prior), but could be discovered as image data becomes
available.

• Dynamic pose: the transform TB
A(t) is time depen-

dent. Such a pose is assumed to change, i.e. the opti-
mizer will allocate a new variable for every time step
t. Sufficient input data must be provided at time t to
solve for TB

A(t).
A body is an object that can have tags and cameras

attached to it. Its pose is always given with respect to
world coordinates, and can be classified as static or dynamic
depending on the nature of the body. For static bodies, an
optional prior pose may be specified.

Tags must have a unique id, and each tag must be
associated with a body to which it is attached. Tags without
association are ignored, unless a default body is specified to
which any unknown tag will be attached upon discovery. In

contrast to body poses, tag poses are always static, and are
expressed with respect to the pertaining body. A tag pose
prior is optional, so long as that is not required to determine
the body pose.

Camera poses, like tag poses, are static, and given with
respect to the body to which the camera is attached. This
body is referred to as the camera’s “rig”, although from a
modeling point of view, it is a body like any other, and can
have for instance tags attached to it. A prior camera pose
(extrinsic calibration) is optional provided the optimization
problem can be solved without it.

With bodies, tags, and cameras, a rich set of SLAM prob-
lems can be modeled, as shown for a simple single-camera
scenario in Figure 1. It is sufficient to provide the static
priors for the lab-to-world (Tw

l), tag-2-to-lab (Tl 2), tag-105-
to-block (Tb

105), and camera-to-rig transform (Tr c). The
remaining poses Tw

b(t) and Tw
r(t), as well as the missing

poses of the tags on the block can be determined from the
images arriving at the camera.

IV. FACTOR GRAPH

Our SLAM is formulated as a bipartite factor graph with
two types of nodes: the variables (poses) which are elements
of the set Θ, and the factors, which constrain the variables
via the set of measurements Z . The factor graph defines a
probability P (Θ|Z) that assumes its maximum a posteriori
(MAP) value for the optimal variable set Θ∗, given the
measurements:

Θ∗ = arg max
Θ

P (Θ|Z) . (2)

The set of variables Z contains:
• The camera poses T

body(cam j)
cam j , with respect to

the bodies they are attached to.
• The tag poses T

body(tag k)
tag k, relative to their respec-

tive bodies.
• The world poses Tw

body l, of static bodies.
• The time-dependent world poses Tw

body m(t), t =
1 . . . Nt of dynamic bodies.

The likelihood is expressed [2] as a product of factors p(i)

that connects the variables with each other via measurements
to form the desired graph structure:

P (Θ|Z) =
∏
i

p(i)(Θ|Z) . (3)

To make the factors p(i) computationally tractable, we follow
the standard approach [2] and model them as Gaussians:

g(x;µ,Σ) = exp(−1

2
||x	 µ||2Σ) . (4)

Here, x is the variable, µ the center of the Gaussian, and
Σ defines the Mahalanobis distance. Note the use of the 	
operator, which reduces to straight subtraction for elements
of a vector space, but produces 6-dimensional Lie algebra
coordinates when applied to elements on the SE(3) manifold:

TA	TB =
[
[log(Rot(T−1

B TA))]>∨ ,Trans(T−1
B TA)>

]>
.

(5)

In (5) Rot() and Trans() refer to the rotational and trans-
lational part of the SE(3) transform, respectively, log() is
the matrix logarithm, and ∨ denotes the vee map operator.
Equipped with the definition of a Gaussian on SE(3), we can
now introduce the basic factors p(i) from Eq. (3).

Absolute Pose Prior. This unary factor can be used to
specify a prior pose T0 with noise Σ for e.g. a tag or a
camera:

pA(T|T0,Σ) = g(T; T0,Σ) . (6)

Relative Pose Prior. With this binary factor, a known
transform ∆T between two pose variables can be specified,
with noise Σ:

pR(TA,TB |∆T,Σ) = g(T−1
B TA; ∆T,Σ) . (7)

If odometry body pose differences ∆Todom(t) with
noise σ are available from e.g. a VIO algorithm run-
ning alongside TagSLAM, a relative pose prior of
pR(Tw

body(t), Tw
body(t − 1)|∆Todom(t), σ) can be used

to insert the odometry updates into the pose graph.
Tag Projection Factor. The output of the tag detection

library is a list of tag IDs and the corresponding image
coordinates uc (in units of pixels) of the corners c = 1 . . . 4
of every tag. This gives rise to one quaternary tag projection
factor per tag:

pT (Tw
body, Trig

cam, Tbody
tag, Tw

rig|{uc}, σp) =∏
c=1...4

g(Π(Tcam
rig Trig

w Tw
body Tbody

tagsc);uc, σp) .

(8)

Here, s refers to the corner coordinates in the tag reference
frame, i.e. s1 = [−l/2,−l/2, 0]>, s2 = [l/2,−l/2, 0]>, s3 =
[l/2, l/2, 0]>, s4 = [−l/2, l/2, 0]> for a tag of side length l.
A sequence of transforms expresses s in camera coordinates,
after which the function Π projects [11] the point onto the
sensor plane and converts it to pixel coordinates. The noise
parameter σp is a diagonal matrix that reflects the accuracy
of the tag library’s corner detector, which is usually assumed
to be about one pixel.

We can visualize the factor structure of Eq. (3) by means
of a graph as shown in Fig. 2 for the scene from Fig. 1. In
Fig. 2, black squares represent factors, whereas circles denote
pose variables to be optimized. The prior factors pA constrain
the static poses Tl 2, Tw

l, Tr c, and Tb
105. A tag projection

factors pT arising from an observation of Tag 2 determines
the dynamic rig pose Tw

r(t), whereas an observation of Tag
105 likewise yields the block pose Tw

b(t). Assuming that
odometry for the rig is provided by some external algorithm,
there is a relative pose factor pR connecting the rig poses
for t and t+ 1. Two more tag observations at t+ 1 generate
additional factors that further constrain rig and block poses
at t+ 1.

V. ROBUST INITIALIZATION

Nonlinear non-convex optimizers such as GTSAM [2] are
iterative solvers and hence rely on a starting guess that is
reasonably close to the optimum. If for example a camera

Tl 2

Tw
l

Tr c

Tb
105

pA

pA

pA

pA

Tw
r(t)

Tw
b(t)

pT

pT

Tw
r(t+ 1)

Tw
b(t+ 1)

pT

pT

pR

Fig. 2. Factor graph of Eq. 3 for the scene shown in Fig. 1

pose is initialized such that one of the observed tag corner
points lies behind the camera, the optimizer will likely fail.

Several sources of error can contribute to poor pose
initialization. TagSLAM has been used for several projects
already, and in our experience, human errors are frequently
the root cause, such as inaccuracies or outright typos when
entering measured tag poses, intrinsic or extrinsic calibration
errors, duplicate tag ids, errors in tag size due to printing or
misspecfication, using tags that are not planar, or supplying
unsychronized stereo images. One of the design goals of
TagSLAM was to produce, as much as possible, a reasonable
result with a bounded error even with compromised input
data, such that at least the scene can be visualized for further
analysis.

Even when all input data is correct, initializing a camera or
tag pose can be challenging, for example because the corner
of the tag is not detected accurately, which may happen
under motion blur, or when a tag is partially occluded.
As described in Ref. [9], there are two camera poses from
where a single tag looks quite similar, with only perspective
distortion distinguishing between them. For a tag that is
barely large enough to be detected and is viewed at a shallow
angle, a tag corner error of just a single pixel can lead to
a dramatically different pose initialization. Localizing off of
a single tag is therefore intrinsically difficult, and should be
avoided. Satisfactory results from a single tag can only be
expected in combination with odometry input or when the
tag image is sufficiently large.

When multiple cameras and several tags are involved with
known or unknown poses it is anything but obvious which
measurements to use, and in which order. For example,
should the pose of camera 1 be established first from the
tag corners, then the pose of camera 2 via a known extrinsic
calibration, or the other way round? Which tags should be
used for this purpose if several are visible?

In case the tag poses are known, one might be tempted
to answer the last question with: use the corner points of all
tags simultaneously with a perspective n-point method (PnP).
In practice we find that PnP is not robust to misspecified
tag poses. Moreover when it fails it is not clear which of

the tags is in error, necessitating an expensive elimination
process. For this reason we base all pose initialization
on homographies [11] from a minimum set of tags only,
carefully picking which tags to use, and in which order. The
remainder of this section will describe how exactly this is
done.

To fully exploit the history of observations, two separate
graphs are maintained: the full graph contains factors and
variables pertaining to all measurements up to the current
time, whereas the optimized graph only has those variables
and factors that are sufficiently constrained to form a well
conditioned optimization problem. All incoming measure-
ments are thus entered immediately into the full graph,
but only find their way into the optimized graph when the
variables can actually be initialized.

Usually several static poses can be initialized right away
because a prior is available. In Fig. 2 for example, the poses
Tl 2, Tw

l, Tr c, and Tb
105 are determinable due to the prior

factors shown to their left, and can therefore be directly
inserted into the optimized graph.

A. Subgraph discovery

As measurements arrive, they give rise to new factors that
create edges in the graph between existing and new variables.
Variables connected to these factors may be rendered deter-
minable, which in turn, through existing factors, may cause
other variables to become determinable as well. Thus every
new factor can give rise to a subgraph of newly determinable
variables. We refer as subgraph discovery to the exhaus-
tive traversing of the graph until no more new variables
can be determined. During this process, all deteriminable
variables and factors are entered into the subgraph. Further,
an initialization list is created that contains the factors in
the order they are discovered. The initialization list later
governs the order in which the subgraph will be initialized.
The discovered subgraph depends on the new factor from
which the discovery is started, so potentially, each new factor
gives rise to a different subgraph. In practice the subgraphs
are connected, and often a set of new factors generates only
a single subgraph.

Note that also factors arising from past measurements may
enter the subgraph. For example, if only tags A and B with
unknown pose were seen at time step t, no camera rig pose
could be determined. But if at t + 1 tags B and C are
observed, and tag C has known pose, then the subgraph at
t+ 1 will contain poses for tags A, B, and C, although tag
A was observed in the previous step.

For robustness against ambiguity, a tag pose will not enter
a subgraph unless its pose is either already determined from
previous observations, or given by a pose prior, or has a
pose ambiguity error ratio [8] of e(γ)/e(γ̇) > 0.3 while
being viewed at an angle of less than 60◦. The last condition
reflects the fact that tag pose ambiguity is most serious a
problem when the tag is seen at a small angle.

All variables of the so generated subgraph are deter-
minable, but if any dynamic poses from previous time steps
are present, they must be constrained or the problem is ill

determined. This is done by inserting absolute priors for
those poses. Fig. 3 shows a subgraph, derived from the graph
in Fig. 2 during time step t+ 1. Note the removal of the tag
projection factors and of the block pose for time t, and the
addition of a prior (colored red) on pose Tw

r(t).

Tl 2

Tw
l

Tr c

Tb
105

pA

pA

pA

pA

Tw
r(t)

pA
Tw

r(t+ 1)

Tw
b(t+ 1)

pT

pT

pR

Fig. 3. Subgraph of graph in Fig. 2

To arrive at a complete set of subgraphs, all new factors
are entered into the new factor list. The order of the factors is
important, and will be discussed further below. An iteration
over this list is performed, and, unless the new factor is
already part of an already discovered subgraph, a new
subgraph is generated by discovery. This procedure results in
a set of disjoint subgraphs with all determinable variables and
connected factors, as well as the corresponding initialization
lists.

B. Order of subgraph discovery
What still remains to be settled is the order in which

factors are entered into the new factor list. This strongly
affects the initialization lists generated during subgraph
discovery, and hence the order in which measurements are
used for initialization. For instance in Fig. 3, there are two
ways to initialize Tw

r(t + 1). One is through the relative
pose factor with respect to Tw

r(t), the other through the tag
projection factor on tag 2.

By examining the typical failure cases of several alterna-
tive approaches, the following order for entering factors into
the new factor list was established:

1) Any relative pose priors. Note that this prefers odome-
try updates, which are typically more reliable in establishing
a body pose than initializing it from tag observations.

2) Any tag projection factors. These factors are sorted
in descending order by pixel area of the observed tag,
irrespective which camera they were observed from. This
means that larger tags will be used first to establish a pose.

3) Any factors that do not establish a pose. Examples
are problem specific additional factors such as distance
measurements between tag corners.

C. Optimization
Once the subgraphs have been obtained, their variables are

initialized in the order specified by the corresponding initial-
ization list. Then all subgraphs are optimized using GTSAM,

Fig. 4. View from the left camera of an Open Vision Computer. Detected
AprilTags are shown in color.

in non-incremental mode, i.e. without using iSAM2 [2], and
their error is evaluated. This step is analogous to model
validation in RANSAC. If a subgraph’s error falls below
a configurable threshold, the subgraph is accepted, and its
factors and optimized values are transferred to the optimized
graph. Subsequently, the optimized graph is optimized with
an iSAM2 update step.

In the rare case where a subgraph is rejected due to
excessive error, an initialization with different ordering is
attempted. Since exhaustively trying all possible orderings
is computationally too expensive, an ad hoc procedure is
adopted that was found to work satisfactorily in practice:
the initialization list of the subgraph is rotated such that the
first factor goes to the end of the list, and all other elements
of the list advance by one. This implies that successively
smaller tags are used to seed the initialization process. The
subgraph is initialized with the new ordering, followed by
optimization. In case the subgraph error is still too high,
this process is repeated until the original ordering is reached
again. If no initialization ordering leads to an acceptable
error, the subgraph is rejected, thus preventing an outlier
measurement from contaminating the optimized graph.

D. Diagnostics

Rejection of a subgraph is usually a strong indicator
of faulty input parameters or misdetected tag corners. In
most cases however, subgraph rejection is not fatal, and
TagSLAM will successfully handle subsequent incoming
data. For diagnosis, TagSLAM produces per-factor and time
resolved error statistics. Such output is essential for tracking
down e.g. incorrectly specified tag poses.

VI. APPLICATION EXAMPLE

We illustrate the versatility of TagSLAM by showing
how it can be used to achieve loop closure for VIO. The
synchronized images and IMU data that serve as input for
the VIO are collected with an Open Vision Computer [12].
During 13 minutes, a total of 15595 stereo frames are
recorded at 20Hz along the 630m long trajectory through the
rooms of an abandoned chemical laboratory. Fig. 4 shows an
example image of some of the 57 tags that are strategically
placed along the corridor. Their poses are deterimined from

the wall orientations and from laser distance measurements
with a Leica Disto D3a. The odometry is computed with the
stereo VIO algorithm as described in Ref. [13] but, running
offline with abundant CPU resources available, we use a
larger number of visual feature points to improve drift.

Fig. 5 shows the trajectories for VIO (cyan), loop-closed
TagSLAM (magenta), and stereo ORB-SLAM2 [3] (yellow).
The tag locations are visible in the map as well. All
trajectories start at the same point at the bottom of the
map, but only the TagSLAM trajectory returns correctly
to the starting point. Both VIO and ORB-SLAM2 exhibit
drift, and evidently ORB-SLAM2 does not achieve loop
closure. This is not surprising since the hallway images look
very different while returning. By combining tag projection
factors from the camera images with relative pose factors
from the odometry, TagSLAM by design closes the loop.

Fig. 5. Trajectory using VIO, TagSLAM, and ORB-SLAM2. The grid cell
size is 1m.

Creating and incrementally optimizing the graph upon
factor insertion takes 188s on an Intel i9-9900K 3.6GHz
CPU, which is an average performance of about 12ms per
frame. A final full (non-incremental) graph optimization adds
another 4.3s to the total processing time. While 12ms time
per frame seems to indicate the possibility of running in real
time, individual frames can take longer to process, depending
on iSAM2 relinearization. As the graph grows over time,
so does the CPU load, and individual frames can take as
much as 260ms. However, for situations where there already
is a trusted map of tag poses available, TagSLAM can be
configured to retain only the last two time steps in the graph,
making it suitable for real-time operation.

VII. CONCLUSION

In this paper we present TagSLAM, a highly flexible
front-end to the factor graph optimizer GTSAM that makes
fiducial based visual SLAM and related tasks accessible
to the robotics community by means of an open source
ROS package located at https://berndpfrommer.
github.io/tagslam_web.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, Present, and Future of Simultaneous
Localization and Mapping: Toward the Robust-Perception Age,” IEEE
Trans. Rob., vol. 32, no. 6, pp. 1309–1332, Dec. 2016.

[2] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping with fluid
relinearization and incremental variable reordering,” in IEEE Intl.
Conf. Robot. Automat. (ICRA), May 2011, pp. 3281–3288.

[3] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an Open-Source
SLAM System for Monocular, Stereo and RGB-D Cameras1,” IEEE
Trans. Rob., vol. 33, no. 5, pp. 1255–1262, 2017.

[4] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial
detection,” in IEEE Intl. Conf. Intel. Rob. Sys. (IROS), Oct. 2016,
pp. 4193–4198.

[5] B. Pfrommer, N. Sanket, K. Daniilidis, and J. Cleveland, “PennCOSY-
VIO: A challenging Visual Inertial Odometry benchmark,” in IEEE
Intl. Conf. Robot. Automat. (ICRA), 2017, pp. 3847–3854.

[6] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an Open-Source Robot Op-
erating System,” in IEEE ICRA: Workshop on Open Source Robotics,
May 2009.

[7] M. Neunert, M. Bloesch, and J. Buchli, “An open source, fiducial
based, visual-inertial motion capture system,” in 19th Intl. Conf.
Inform. Fus. (FUSION), July 2016, pp. 1523–1530.

[8] R. Muñoz Salinas, M. Marı́n-Jiménez, and R. Medina-Carnicer, “SPM-
SLAM: Simultaneous Localization and Mapping with Squared Planar
Markers,” Pattern Recognition, vol. 86, 09 2018.

[9] G. Schweighofer and A. Pinz, “Robust Pose Estimation from a Planar
Target,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp.
2024–2030, 2006.

[10] E. Westman and M. Kaess, “Underwater AprilTag SLAM and calibra-
tion for high precision robot localization,” Carnegie Mellon University,
Pittsburgh, PA, USA, Tech. Rep. CMU-RI-TR-18-43, Oct. 2018.

[11] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-D
Vision. SpringerVerlag, 2003, pp. 134–139.

[12] M. Quigley, K. Mohta, S. S. Shivakumar, M. Watterson, Y. Mul-
gaonkar, M. Arguedas, K. Sun, S. Liu, B. Pfrommer, R. V. Kumar,
and C. J. Taylor, “The Open Vision Computer,” in IEEE Intl. Conf.
Robot. Automat. (ICRA), 2019, pp. 1834–1840.

[13] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,
C. J. Taylor, and V. Kumar, “Robust stereo visual inertial odometry
for fast autonomous flight,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 965–972, 2018.

https://berndpfrommer.github.io/tagslam_web
https://berndpfrommer.github.io/tagslam_web

	Introduction
	Related Work
	Model Setup
	Factor Graph
	Robust Initialization
	Subgraph discovery
	Order of subgraph discovery
	Optimization
	Diagnostics

	Application Example
	Conclusion
	References

